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Abstract: Nonorthogonal multiple access (NOMA) is a promising multiple access scheme for 5G wireless 
networks. However, NOMA faces several challenges that still need to be solved optimally. Deep learning algorithms 
have been proposed as a potential solution to address these challenges. This review provides an overview of the use 
of deep learning algorithms to optimize NOMA performance in 5G networks. An investigation is conducted on 
how deep learning methods are applied in NOMA systems for resource allocation, channel estimation and 
detection, successive interference cancellation, and user clustering.They can learn optimal user clustering, optimal 
allocation, and interference alignment strategies, eventually boosting the network performance. In addition, deep 
learning algorithms can learn the complex relationships between the transmitted symbols and the received signal, 
leading to accurate detection of the superimposed signals. Opportunities and challenges in NOMA can be identified 

based on existing research showing how applying deep learning algorithms is better than conventional approaches. 
The main contribution of this review is to provide insights into the potential of deep learning algorithms to 
remarkably improve NOMA performance in 5G networks. This article is also a valuable resource for researchers 
and practitioners interested in using deep learning algorithms for NOMA in 5G networks. 
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1. Introduction 
 
Fifth-generation (5G) networks are the latest generation of wireless communication systems that provide higher 
data rates, lower latency, and increased connectivity compared with previous generations of wireless networks [1][2]. 
When 5G is finally implemented, the underlying concepts of cellular technology change drastically, making them 
incompatible with older generations. For global high-speed coverage and uninterrupted user experience, 5G 
technology must combine LTE and WIFI networks. Spectrum control must be reexamined and improved for 
efficient and effective resource usage in the 5G core network, which requires high flexibility and intelligence [3]. A 
key technology that enables 5G networks to achieve these goals isNOMA. NOMA allows users to simultaneously 
share the same time–frequency resources, increasing network capacity and spectral efficiency [4]. However, NOMA 
implementation in 5G networks warrants further improvement. Channel estimation, resource allocation, successive 
interference cancellation (SIC), and user clustering are considered vital challenges of NOMA [5][6][7]. 
 
Accurate channel estimation is essential in NOMA to allocate power and schedule users. Resource allocation is 
another critical challenge in NOMA because it efficiently distributes frequency, power, and time resources among 
users. SIC is another challenge in NOMA because it simultaneously decodes multiple signals from different users, 
requiring sophisticated signal processing techniques. Finally, user clustering is an important challenge in NOMA 
because it involves grouping users with similar channel conditions and power requirements to maximize system 
capacity and efficiency. Addressing these challenges requires the development of robust algorithms that can adapt to 
changing network conditions and mitigate inter-user interference to boost the performance of NOMA in 5G 
networks and increase network capacity and spectral efficiency.Researchers have turned to deep learning 
algorithmsas a potential solution to address these challenges. Deep learning is a branch of artificial intelligence that 
uses neural networks with multiple hidden layers to learn complex patterns and relationships from data [8] and has 
emerged as a potential solution to the challenges associated with NOMA in 5G networks. Deep learning algorithms 
have shown promise in various applications, including image and speech recognition, natural language processing, 
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and game playing [9]. They can optimize NOMA performance by addressing the issues that have been solved in 
conventional ways but still hinder the attainment of optimal performance [10] [11]. 
 
This review article discusses deep learning algorithms’ potential in addressing the challenges associated with NOMA 
implementation in 5G networks. First, a brief background of 5G networks and NOMA is provided. Second, an 
overview of the most famous deep learning models is introduced. Third, a discussion of the challengesrelated to 
NOMA and the current approaches to addressing these challenges are presented. This review article mainly focuses 
on using deep learning algorithms for NOMA optimization, including channel estimation and detection, 
interference management, and user grouping. Finally, the importance of ongoing studies on the significance of deep 
learning algorithms in enhancing NOMA performance in 5G networks is emphasized as a conclusion. 
 
2. Background 
 
5G networks are the latest generation of mobile communication systems that provide quicker, more dependable, 
and more efficient connections than prior generations of wireless networks.To achieve these needs, they 
incorporate cutting-edge technologies, including massive multiple-input multiple-output (MIMO), mmWave 
communications, and NOMA [12]. NOMA is a promising strategy that can potentially increase 5G networks’ 
spectral efficiency and connectivity. NOMA is a multiple-access strategy that uses superposition coding and SICS to 
enable several users to share the same time–frequency resource. [13][14]. A simple scenario with a single base 
station and a downlink NOMA system for two users is shown in Figure 1. To avoid interference, the better-quality 
signal from User 1 should be decoded, and the messages from User 2 should be filtered out using SIC before User 
2’s signal is decoded. When comparing users 1 and 2, user 2 has a bigger share of power allocation.In contrast to 
conventional orthogonal multiple access methods, NOMA employs power or code domain multiplexing to permit 
simultaneous transmissions, enabling receivers to detect signals with varied power levels or signature sequences 
[15][16].In case of a large disparity in the quality of the transmission channels available to different users, NOMA is 
beneficial because it allows users with poor channels to receive signals with less interference.The conceptual 
frameworks of NOMA are based on superposition coding, which involves simultaneously superimposing and 
transmitting multiple signals with various power levels or signature sequences. 

 
Figure 1. Adownlink NOMA architecture of two users and one base station. 
 
Power and code domains are the main types of NOMA methodologies. The most prevalent version of NOMA, 
power-domain NOMA, enables several users to use the sametime–frequency resources by giving each user’s signal a 
distinctive power level. Nevertheless, code-domain NOMA employs signature sequences; each user is given a 
different signature sequence to permit simultaneous communications [15][17].NOMA is actualizedusing a novel 
interference cancellation method termed SIC. With the SIC approach, the receiver first eliminates interference from 
the powerful user and decodes its signal. The receiver then discards the strong user’s decoded signal in favor of the 
weak one. This procedure is continuously repeated until all the signals have been detected [18][19].NOMA can 
significantly enhance the performance of 5G networks by increasing the network’s capacity while decreasing the 
amount of transmit power required. Moreover, it may be used with single-input, single-output, and MIMO systems 
and provide massive connections.Compared to conventional multiple-access methods, NOMA offers several 
significant benefits. First, NOMA can potentially improve the spectrum’s efficiency by enabling many users to 
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utilize the same frequency band, significantly increasing capacity concurrently. Second, NOMA can potentially 
increase the network’s reliability by delivering improved service to customers with poor reception channels. Third, 
the network’s latency and speed decreasedbecause NOMA allows for the simultaneous service of several customers 
[15][18][20].Overall, NOMA has emerged as a potential radio access method for enhancing the performance of 5G 
wireless networks. It has become a subject of interest in academia and industry due to its capacity to serve several 
customers while using the same time and frequency resources via power- and code-domain approaches. NOMA has 
become an essential technology for developing successful 5G wireless networks due to its spectrum efficiency, user 
fairness, and capacity advantages. 
 
3. Deep Learning Algorithms 
 
Deep learning is a subset of machine learning algorithms that uses many hidden layers to perform more complex 
targets in advance and accurately.Most deep learning techniques use neural network topologies, which is why deep 
learning models are sometimes called deep neural networks, as shown in Figure 2.Deep learning shows significant 
potential in handling NOMA system difficulties, such as resource allocation, channel estimation and detection, SIC, 
and user clustering. Deep learning can assign resources to users depending on their channel conditions, conduct 
accurate channel estimation and detection, and improve SIC in NOMA systems due to its capacity to learn from 
vast datasets. Algorithms based on deep learning may cluster users with similar channel conditions to prevent 
interference and enhance the overall performance of NOMA systems. These advances in deep learning have the 
potential to substantially increase the spectral efficiency and capacity of future wireless networks. In the following 
subheadings, a discussion of the most well-known deep learning models applied in 5G networks is provided as 
follows: 

 
Figure 2.Anarchitecture of deep neural networks 

 
3.1. Convolutional Neural Networks (CNNs) 
 
CNNs have become increasingly popular because of their exceptional performance in image classification, object 
detection, speech recognition, and natural language processing tasks. One of the critical advantages of CNNs is their 
ability to learn hierarchical representations of input data by automatically detecting features at different levels of 
abstraction. This feature allows CNNs to identify complex patterns and relationships in the input data, making the 
information well-suited for tasks that involve recognizing objects or patterns in images, sounds, or text. CNNs have 
demonstrated remarkable performance and versatility in various applications, making them a popular choice for 
many researchers and practitioners in machine learning.  
 
In [21], an innovative approach was presented to parallelize the training of CNNs over several GPUs. A 
comprehensive overview of current developments in CNNs was conducted in [22]. A new set of rapid algorithms 
for CNNs were presented in [23] using Winograd’s minimum filtering methods. Zhang et al. [24] proposed a CNN-
based approach for forest fire detection, trained the model on infrared images of forest areas, and achieved high 
accuracy in detecting fire occurrences. This efficient and reliable method for early detection could improve forest 
fire prevention and management. Gopalakrishnan et al.[25] applied transfer learning to CNNs for computer vision-
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based pavement distress detection. The model was trained on a large dataset of pavement images and could 
accurately classify different types of pavement distress, such as cracks and potholes. This study demonstrated that 
transfer learning could significantly improve the performance of CNNs in detecting pavement distress, potentially 
leading to efficient and cost-effective road maintenance.  
 
Dominguez-Sanchez et al. [26] used CNNs to recognize pedestrian movement direction based on video data. The 
model achieved high accuracy in predicting the direction of pedestrian movement, showing potential applications in 
traffic flow analysis and pedestrian safety. In [27], abstract transformers were developed to accurately describe the 
operation of max pooling, fully connected, convolutional layers. Rectified linear units activate fully connected layers 
in neural networks. According to [28], the standard practice is to analyze 3D movies frame-by-frame by utilizing 2D 
convents or 3D perception algorithms. 
 
Nevertheless, they suggested a unique method that uses high-dimensional convolutions in 4D CNNs to analyze 
these 3D videos for spatiotemporal perception directly. In [29], Context Net was proposed as a novel CNN 
architecture for automatic speech recognition. Their model incorporates global context information to capture long-
term dependencies and outperforms traditional CNN models in speech recognition tasks. Regarding detecting 
fractures, [30] described a deeply supervised CNN that employs a unique multiscale convolutional feature fusion 
module. 
 
Overall, these studies showed the versatility and potential of CNNs in various applications, from natural language 
processing to image and speech recognition, wireless communications, medical image analysis, and solving partial 
differential equations. CNN development continues to be an active area of research, and these findings pave the 
way for further exploration and development. 
 
3.2. Recurrent Neural Networks (RNNs) 
 
RNNs have shown great promise in modeling sequential data, such as time series data, speech, and text. RNNs are 
particularly useful for dealing with sequences of varying lengths and complex nonlinear relationships between 
sequence elements. The concept of RNNs dated back to the early 1990s [31] butonly began to gain widespread 
attentionafter the introduction of Long Short-Term Memory (LSTM) networks by Hochreiter and Schmidhuber in 
1997 [32]. LSTMs are a type of RNN that overcome the vanishing gradient problem that plagued earlier RNNs, 
paving the way for developing sophisticated RNN architectures. Researchers have developed many variations and 
extensions of the basic RNN architecture. Some examples include Gated Recurrent Units (GRUs) [33], CNNs with 
RNNs [34], and Attention Mechanisms [35]. These variations have strengths and weaknesses and can be applied to 
sequential data types. 
 
One of the critical advantages of RNNs is their ability to capture long-term dependencies between elements in a 
sequence through recurrent connections, which allow information to be passed from one-time step to the next. 
Owing to this feature, RNNs are well-suited to tasks such as language modeling, where the context of a word or 
phrase can significantly impact its meaning. However, RNNs also have some limitations. One of the main 
challenges of training RNNs is the difficulty of propagating errors through time, also known as the vanishing 
gradient problem [36]. As a result, training large RNNs has become a challenge. Another issue is capturing long-
term dependencies, which can be crucial in music generation or stock price prediction tasks. Despite these 
challenges, RNNs have been successfully applied to a wide range of functions, including speech recognition [37], 
image captioning [38], and machine translation [39].Due to their ability to accurately capture temporal connections 
and context, RNNs are particularly useful for investigating sequential data. They have produced outstanding results 
in a wide range of fields, including natural language processing, speech recognition, and image captioning. Although 
some difficulties remain to be tackled, the development of revolutionary approaches such as LSTMs and GRUs has 
improved the functionality and learning simplicity of RNNs, paving the way for exciting possibilities in the years to 
come. 

 
3.3. Deep Reinforcement Learning (DRL) 
 
DRL is a promising technique for addressing the 5G system challenges. It is a subfield of machine learning (ML) 
that enables an agent to learn the optimum control approach by interacting with the environment and getting 
feedback in the form of rewards or penalties [40][41][42]. In 5G systems, DRL has been widely used as a solution to 
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a variety of optimization challenges, including those related to resource allocation, mobility, and handover 
optimization [43],[44],[45].Resource allocation is one domain in 5G systemswhere DRL has been widely applied. 
For example, resource allocation in 5G heterogeneous networks (HetNets) is complex due to the network’s high 
complexity and the traffic’s dynamic nature. DRL has been utilized in various resource allocation approaches, such 
as energy harvesting, network slicing, cognitive HetNets, coordinated multipoint transmission, and big data [43]. 
Handover optimization is another domain in 5G systems where DRL has demonstrated strong potential. Handover 
optimization is crucial in 5G systems because it improves mobility and throughput performance. The handovers 
between cells in a 5G cellular network have been optimized with the help of DRL [45].DRL has shown great 
promise to overcome the obstacles to optimization encountered by 5G systems. It has been successfully used in 
resource management and handover optimization. DRL is expectedto play an increasingly essential role in 
optimizing and enhancing the performance of 5G systems in the future as these systems continue to advance and 
grow complicated [46]. 
 
4. Challenges in the Application of NOMA in 5G Networks 
 
NOMA has excellent potential to increase 5G networks’ spectral efficiency; however, various challenges must be 
overcometo fulfill its potential. Allocation of resources, channel estimation and detection, SIC, and user clustering 
are only a few of the significant difficulties NOMA faces in 5G systemsdiscussed in this work.Allocation of 
resources is one of the primary issues of NOMA systems. Since NOMA permits several users to share a single 
frequency resource, equitably allocating resources to optimize system capacity is crucial. Many approaches, such as 
optimization-based algorithms, game theory, and matching theory, have been developed to tackle this issue [47]. 
Finding the best resource allocation approach is still a subject of continuous research. 
 
Channel estimate and detection is yet another one of the most significant challenges for NOMA. An accurate 
channel estimate is crucial to separate the signals because NOMA needs to decode simultaneous signals from the 
same frequency resource. Power-domain NOMA systems often utilize superposition coding at the transmitter and 
SIC at the receiver [48]. Many techniques have been applied to enhance channel estimation and detection 
performance.SIC is an essential component of NOMA systems and is used to reduce user interference. Despite its 
many benefits, the computational complexity of SIC demands careful implementation to prevent inaccuracy.Several 
techniques, such as adaptive interference cancellation and hybridanalog–digital cancellation methods, have been 
proposed to improve SIC performance [49]. 
 
Another difficulty with NOMA systems is user clustering. Since NOMA enables several users to share a single 
frequency resource, effective user clustering is crucial to reduce interference and maximize system capacity. Several 
clustering techniques have been presented, such as graph partitioning and K-means clustering [50]. However, 
finding the best user clustering approach is still a current research topic. The following subheading discusses how 
deep learning strategies have been applied in many approaches to improve efficiency and boost performance. 
 
4.1. Resource Allocation 
 
Efficient resource allocation is a critical challenge in 5G networks, and NOMA is a promising technology to 
enhance spectral efficiency. However, resource allocation in NOMA is complex because multiple users share the 
same frequency band, resulting in nonlinear interference. Power and subchannels must be allocated to multiple 
users to achieve optimal performance. Researchers have proposed various resource allocation algorithms, including 
conventional optimization-based approaches and, recently, deep learning-based approaches, that aim to improve the 
system throughput, energy efficiency, and user fairness while mitigating user interference. Developing efficient and 
effective resource allocation techniques in NOMA systems is crucial to realize the full potential of 5G networks and 
meetingfuture communication demands.Deep learning models have shown promising results in addressing the 
resource allocation issue in NOMA 5G systems. Traditional optimization-based methods for resource allocation are 
computationally complex and may not scale well with the increasing number of users and the complexity of the 
communication scenarios.  
 
By contrast, deep learning-based methods can provide efficient and effective solutions by leveraging the power of 
deep neural networks (DNNs) to learn complex patterns and relationships from large amounts of data.One of the 
main advantages of deep learning-based approaches is their ability to handle the nonlinear and dynamic nature of 
the wireless communication environment, which is challenging to capture with traditional optimization techniques. 
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Deep learning models can take advantage of the large amounts of data generated in NOMA systems to learn the 
optimal resource allocation policies that maximize the system performance while minimizing user interference. 
 
Several deep learning-based resource allocation methods have been proposed for NOMA systems, such as DRL, 
DNNs, and CNNs. These techniques can improve the energy efficiency, throughput, and fairness of NOMA 
systems while reducing the computational complexity of the optimization problem.Resource allocation in NOMA 
systems with inadequate SIC was introduced in detail in [51]. The authors presented an approach that uses a deep 
RNN to address the issue of resource allocation efficiently and effectively. This method yields high spectrum 
efficiency and connectivity scalability despite the substantial power consumption and poor energy efficiency of 
using NOMA technology with imperfect SIC.A systematic approach that employs deep learning algorithms for 
multi-input and multi-output nonorthogonal multiple access (MIMO-NOMA) systems was presented in [52] to 
maximize cumulative data rate and energy efficiency. The proposed approach, known as CDNN, deals with the 
problem of power allocation to increase data rates and energy efficiency in MIMO-NOMA networks. Many 
simulations have shown that CDNN exceeds the performance of conventional tactics, resulting in higher 
cumulative data rates and energy efficiency. 
 
To address the OFDMA subcarrier assignment and NOMA user grouping problems in downlink video 
communication systems, [53] proposed deep learning and supervised learning. The authors suggested a conversion 
procedure that may map the result of the DNN’s output layer’s sigmoid activation function to either zero 
(unassigned) or one (assigned), fulfilling two strict requirements. In the experimental stage of the DNN, a non-
iterative method produces PSNR performance that is roughly the same (within 0.2 dB) as that from the iterative 
methods but with less complexity. One study suggested the Deep Q Network (DQN) as a workable model-free 
solution for NOMA systems [54]. The multi-agent DQN may enhance power transmission, user offloading 
patterns, and channel resource allocation. Simulation results demonstrated that the multi-agent DQN technique 
could effectively empower each agent to pinpoint an optimal solution with high accuracy. 
 
To increase cache usefulness and the system’s overall efficacy, [55] analyzed the possible advantages of integrating 
caching with NOMA. The authors proposed two approaches—a divide-and-conquer-based strategy and a DRL 
approach—to maximize the quality of service for users and assure fairness. Simulation results showed that these 
strategies work well. They also compared how well these approaches operate. The combined subcarrier assignment 
and power allocation issue in uplink multiuser NOMA systems were addressed in [56] using a novel two-step 
approach based on DRL. Compared with conventional approaches, the suggested DRL algorithm offers enhanced 
energy efficiency over a range of transmit power constraints. The algorithm dynamically governs all users’ transmit 
power, which can also change the resource allocation strategy in response to system feedback.  
 
For near-optimum resource allocation, [57] suggested a DRL framework. The researchers used an attention-based 
neural network (ANN) to assign channels. The performance results demonstrated that the presented 
approach performs better than cutting-edge methods and improves system performance. [58] proposed three DRL-
based frameworks to simultaneously assign subchannels and power in an uplink multiuser NOMA system. Discrete 
DRL-based resource allocation, continuous DRL-based resource allocation, and combined DRL and optimal 
resource allocation are examples of these frameworks. Numerical analysis showed that the suggested frameworks 
significantly improve the uplink NOMA system’s energy efficiency performance while reducing the computational 
burden. In [59], the authors discussed a reinforcement learning-based power control approach for downlink NOMA 
transmission that does not rely on previous knowledge of jamming or radio channel characteristics. This work 
concentrated on power allocation in a NOMA system with multiple antennas when a clever jammer is present. The 
effect of multiple antennas and radio channel states was discovered when the researchers derived a Stackelberg 
equilibrium for the anti-jamming NOMA transmission game and the current criteria that ensure its existence. 
Compared with the conventional Q-learning-based technique, simulation results showedthat the suggested method 
dramatically enhances the sum data rates of users. 
 
Deep learning-based methods have the potential to revolutionize resource allocation in NOMA 5G systems, 
providing efficient and effective solutions that can meet the demands of future communication.Table 1 presents an 
overview of the deep learning models used in state-of-the-art to tackle the resource allocation challenge. 
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Table 1: Summary of studies that use deep learning in resource allocation approaches.       
 

DL Model Research Outcomes 
Reference 
Number 

RNN - Better spectrum efficiency and connection scalability. [51] 

DNN 
- Higher data rate and energy efficiency than conventional methods. 

- Roughly matches the convolutional algorithms’ average peak signal-
to-noise ratio but with less complexity. 

[52],[53] 

DLR 

- Deep Q network solves model-free NOMA system issues. 

- Improve performance by using total bandwidth. 

- Achieve higher energy efficiency under different transmission power 
constraints than other conventional methods. 

- Able to allocate resources dynamically. 

- Achieve high data rates without previous knowledge of jamming 
and channel conditions. 

[54],[55],[56], 
[57],[58],[59] 

 
4.2. Channel Estimation and Detection 
 
Accurate signal detection and channel estimation are among the main challenges in NOMA 5G systems. Accurate 
channel response estimation is challenging due to the wireless channel’s complexity, especially when multiuser 
interference is present. Conventional detection and channel estimation techniques may need to be more effective in 
addressing these problems. Recent studies have, however, demonstrated that these problems could be solved using 
deep learning models. A model that can accurately detect the desired signals and learn the channel characteristics 
can be trained using deep learning techniques. This model can effectively estimate the channel and detect the signals 
despite multiuser interference and channel distortions by learning the complex mapping between the received 
signals and the desired output. 
 
An example of using deep learning-based approaches for the joint optimization of channel estimation and detection 
processes, where the model is trained on a large dataset of channel and signal pairs, is provided. The model can be 
used in real-time for accurate and reliable signal detection and channel estimation. Deep learning models can also 
enhance the performance of conventional channel estimation and detection techniques by including learned features 
and representations of the signal and channel properties. With these strategies, NOMA 5G systems have achieved 
significantly improved performance, making them dependable and effective at addressing the problems associated 
with next-generation wireless communication networks. 
 
A novel and effective method for NOMA utilizing deep learning that can determine wireless channels for NOMA 
end-to-end was described in [60]. An LTSM network based on DL was integrated into a typical NOMA system so 
that the suggested technique could automatically identify channel characteristics. Simulated findings showed that the 
suggested methodology is superior to conventional approaches in strength and effectiveness.Using deep learning 
approaches to find an ideal decoding order for a NOMA system efficiently, [61] offered a long-term power 
allocation scheme (DL-PA) in the framework of satellite-based Internet of Things (S-IoT). Relative to the baseline 
evaluation criteria, including network utility, average arrival rate, and queuing time, the S-IoT NOMA system’s 
efficiency is vastly improved by the DL-PA technique. In addition, the suggested DL-PA methodology excels over 
the standard approach by delivering a more reliable decoding sequence. Deep learning is an effective and efficient 
approach for detecting NOMA signals [62]. Owing to channel distortion and multiuser signal interference, the 
presented DL technique combines channel estimation with the recovery of the intended signal. Extensive 
performance simulations confirmed that the developed DL method could overcome the challenges caused by 
channel impairment and produce satisfactory detection results.  
 
A deep learning-assisted receiver for NOMA joint signal detection was introduced in [63]. The DL-based receiver 
performs channel estimation, equalization, and demodulation in a single pass. The tapped-delay line channel model 
can show improvement in performance and resilience when using the presented deep learning method. [64] 
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presented a novel mechanism for signal detection for NOMA uplink receivers using CNNs in a single-shot mode. 
In training and testing, a three-layer CNN with 32 filters registered a maximum accuracy of approximately 81%. 
Compared with existing state-of-the-art methods such as least square, minimum mean square error, and maximum 
likelihood, the proposed technique demonstrated considerable improvement in symbol error rate versus signal-to-
noise ratio across a wide range of channel characteristics.In [65], a bidirectional long short-term memory (Bi-LSTM) 
structure was developed to perform multiuser uplink channel estimation (CE) and detect the initially transmitted 
signal. The suggested Bi-LTSM model delivers functional gains regarding symbol error rate and signal-to-noise ratio 
and can retrieve multiuser transmitted bits that the channel has corrupted. It is appropriate for future wireless 
communication technologies, such as 5G.  
 
In [66], a NOMA receiver based on deep learning that considers channel state information and recognizes the 
originally sent symbols of numerous users in a single step was proposed. Comparison between the SIC decoding 
and the DL-based technique reveals the extraordinary symbol detection ability of the latter. DNNs are assessed to 
directly recover newly transmitted symbols after being trained offline using data generated from channel realizations 
and labeled symbol data. Deep learning models can be a powerful and effective solution to channel estimation and 
detecting problems in NOMA 5G systems. They can provide accurate and efficient channel estimation and 
multiuser detecting capabilities.Table 2 presents an overview of the deep learning models used in state-of-the-art to 
tackle the channel estimation and detectionchallenges. 
 
Table 2: Summary of studies that use deep learning in channel estimation and detecting approaches.       
 

DL Model Research Outcomes Reference Number 

LSTM 
- Powerful and effective compared to traditional methods. 
- Recover channel-distorted multiuser transmission signals. 

[60],[65] 

DNN 

- Identify channel distortion and improve detection 
performance. 

- Better symbol detecting than SIC. 
- Optimally decode the satellite-based Internet of Things (S-IoT) 

NOMA downlink system. 

[61],[62],[66] 

CNN 

- Accomplishes channel estimation, equalization, and 
demodulation. 

- Better performance other than traditional approaches. 
 

[63],[64] 

 
4.3. User Clustering 
 
The increasing demand for high-speed data and internet access has led to the development of new wireless 
communication technologies, such as the 5G network. NOMA is a promising technology that has gained much 
attention recently due to its high spectral efficiency and ability to support multiple users on the same frequency 
channel. However, one of the challenges in NOMA systems is user clustering. It refers to grouping users with 
similar channel characteristics and power allocation, which is essential for optimizing the system performance, 
minimizing interference, and maximizing the overall system throughput. User clustering is a complex problem in 
NOMA networks, especially in multicell scenarios. Various factors, such as the number of users, location, and level 
of interference, influence the network’s performance. Traditional clustering methods may be unable to cope with 
such networks’ complexity and dynamics; therefore, new approaches are required to solve this problem effectively. 
Deep learning is an emerging technique with great potential in solving complex problems in various fields, including 
wireless communication networks. Deep learning-based solutions for user clustering in NOMA networks have 
received interest due to their ability to handle the problem’s complexity and provide accurate and efficient solutions. 
 
One approach for solving the user clustering issue in NOMA networks was presented in [67]. This novel technique 
employs artificial neural networks (ANNs) for user clustering in the 5G NOMA downlink. It aims to maintain an 
acceptable level of complexity while achieving the highest possible throughput performance. Simulation findings 
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indicated that the suggested method considerably decreases complexity with a throughput performance of 98% 
(almost ideal throughput performance) compared with optimal techniques. The ANN model can be used to 
anticipate the development of clusters and to assess the model’s accuracy using the learned parameters and tweaked 
hyperparameters. Another approach presented in [68] uses SARSA Q-learning and DRL algorithms to aid base 
stations in the optimal allocation of available resources to IoT users considering diverse traffic situations. The 
SARSA Q-learning and DRL algorithms beat orthogonal multiple access (OMA) in simulations, converging to the 
maximum sum rate. The proposed approach, which uses uplink NOMA methods in multicell systems and user 
clustering-based resource allocation, effectively maximizes network traffic. 
 
In [69], reinforcement learning (RL) was presented as a novel solution to the problems of user clustering and power 
allocation in NOMA systems. The Object Migration Automata and one of its versions address the user clustering 
problem in stochastic contexts. A greedy heuristic is applied to the obtained clusters to derive power allocation. 
Multiple classification challenges with deep learning were presented in [70] to identify which users must be specified 
in the initial step of a MIMO-NOMA approach. Second-order channel statistics serve as the foundation for the 
neural network feed, ensuring its resistance to rapid fading. The suggested deep learning-based technique gives a 
significant rate advantage over competing methods by eliminating ineffective “lazy” solutions. A DNN-based user 
clustering technique known as DNN-UC was employed in [71] to effectively represent the intricate link among 
cluster formation, transmission powers, and channel diversity. The DNN-UC technique is more efficient than the 
ANN user clustering approach (ANN-UC) because the UC issue is nonconvex NP-complete, and the ANN model 
can only partially reflect it. The DNN-UC can attain 97% of the throughput of the BF-S approach by tuning the 
hyperparameters to almost optimal performance. User clustering is an essential issue in NOMA 5G networks that 
can significantly affect system performance. Deep learning-based approaches, including DNNs, RL, ANNs, and 
location-aided schemes, have shown great potential in effectively addressing this problem. These techniques can 
help improve the overall system throughput and minimize interference, leading to good network performance and 
user experience.Table 3 presents an overview of the deep learning models used in state-of-the-art to tackle the user 
clustering challenge. 
 
Table 3: Summary of studies that use deep learning in user clustering approaches.       
 

DL Model Research Outcomes Reference Number 

ANN - Reached 98% of throughputperformance. [67] 

DRL 
- Optimizes network traffic. 
- Using a greedy heuristic, infer power allocation from the user 

clusters. 
[68],[69] 

FNNN - Outperforms old slow techniques. [70] 

DNN - Maximize throughput. [71] 

 
4.4. SIC 
 
SIC is a critical technique in NOMA 5G networks to mitigate interference and enhance spectral efficiency. 
However, the effectiveness of SIC in NOMA systems is limited by the complexity and accuracy of the detection 
algorithms used to decode the signals of multiple users.Traditional detection methods, such as ML and Linear 
Minimum Mean Square Error, can perform well in ideal conditions; however, noise and intersymbol interference 
compromise accuracy. Moreover, these methods are highly complex when applied to large-scale systems with many 
users.Deep learning models have emerged as a promising approach for enhancing the accuracy and efficiency of 
interference management in NOMA networks to overcome these limitations. DNNs can learn the underlying 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

 

139 www.ijasr.org                                                                  Copyright © 2023 IJASR All rights reserved   

 

patterns and correlations in the received signals and use this knowledge to improve detection performance and 
reduce computational complexity. 
 
Several studies proposed deep learning-based SIC methods for NOMA systems. For example, a novel method for 
SIC using deep learning for NOMA systems was developed in [72]. In contrast to conventional SIC techniques and 
DL-based approaches, this method uses a separate DNN to decode each user’s stream at every SIC stage, yielding 
an improved bit error rate performance. In addition, this strategy maintains a low level of computational 
complexity.In [73], a strategy was presented to improve the performance of single base station and multiuser 
NOMA systems using CNN-based sequential interference cancellation. The suggested plan successfully reduces the 
losses brought on by SIC flaws. Simulation results showed that the CNN-based SIC scheme could overcome the 
limitations of traditional SIC methods and provide reliable detection results. Moreover, [74] recommended deep 
learning approachesto reduce and categorize interference (IN) in NOMA-based systems. They suggested using a 
DNN to identify and eliminate the damaging effects of IN and another deep learning network to discriminate 
between high and low levels of IN in NOMA symbols influenced by noise. Both networks would be deep learning 
networks.[75] developed a new deep learning-based downlink technique for the MIMO-NOMA system. The 
proposed method enhances the MIMO-NOMA system’s precoding and SIC decoding. Numerical results showed 
that this approach is practical and more efficient than other techniques. 
 
In [76], a deep learning-based receiver technique with soft information (DLSI) was introduced for uplinking MISO 
NOMA systems where symbols of the transmitted signals are detected sequentially using DNNs. Owing to the 
included soft information in the SIC stage, which contains more information about the signal than hard decision, 
error propagation can be mitigated to a low level.Deep learning models can efficiently handle the problem of SICin 
NOMA 5G networks. The potential of deep learning lies in its ability to learn complex patterns and correlations in 
the received signals and use this knowledge to enhance the accuracy and efficiency of the detection algorithms. 
Developing deep learning-based interference management schemes is critical in realizing high-performance, low-
latency, and energy-efficient NOMA 5G networks.Table 4 presents an overview of the deep learning models used in 
state-of-the-art to tackle the user clustering challenge. 
 
Table 4: Summary of studies that use deep learning in successive interference cancellation approaches.       
 

DL Model Research Outcomes Reference Number 

DNN 
- Improves bit error rate while reducing computing complexity. 
- Identify impulsive noise and reduce its harmful effects. 
- Reduces error propagation. 

[72],[74],[76] 

CNN 
- Overcome SIC’s limitations and produce reliable detection 

results 
[73] 

FNN 
- Reduces total mean square error by optimizing precoding and 

SIC decoding. 
[75] 

 
5. Conclusion 
 
This article examined the challenges NOMA faces in 5G networks and the potential of deep learning algorithms to 
address these challenges. It is clearly shown that deep learning algorithms have the potential to improve NOMA 
performance in 5G networks significantly.In particular, itdiscussed how deep learning algorithms can be used for 
resource allocation, channel estimation and detection, SIC, and user clustering in NOMA systems.Our review 
highlighted several opportunities for future research in this area. One potential research direction is the 
development of deep learning algorithms that can help optimize power allocation and user clustering in NOMA 
systems. Another direction is the investigation of hybrid NOMA schemes that combine deep learning algorithms 
with other optimization techniques toimprove network performance further. Research on the practical 
implementation of deep learning algorithms in NOMA systems, including computational complexity and energy 
efficiency issues, is also warranted. To point out, deep learning algorithms can address NOMA’s challenges in 5G 
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networks and significantly improve network performance. The development and application of deep learning 
algorithms in NOMA systems are still in their early stages, and continued research in this area is warranted. 
Nonetheless, the promising results obtained from existing research suggested that deep learning algorithms could 
play a crucial role in the success of NOMA in 5G networks. 
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