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Abstract – We construct a simple mathematical model on Ebola transmission. The model accounts for the 
interaction between infectious and susceptible humans leading to infection. The model consisting of a system of 
ordinary differential equations describes the evolution and propagation of Ebola disease. The model divides the 
human population into susceptible humans, latent, infectious, convalescent and recovered humans. The analysis 
includes establishment of the basic reproduction number', R_0, in which R_0<1 guarantees a disease free state 
that is locally and globally asymptotically stable. The analysis shows that convalescent humans play a great role in 
ebola virus transmission. 

Keywords: Ebola, Logistic, Modelling, Convalescence. 

1. Introduction 

The Ebola virus disease which was first noticed in 1976in Southern Sudan and the Democratic Republic of Congo 
[1] has resurfaced in subsequent years. Especially, between 1976 and  January 2003, 10 significant Ebola fever 
outbreaks have occurred in Africa involving more than 1600 cases of infection and 1100 fatalities [2]. Ebola virus 
is transmitted through direct contact with blood and body fluid of infected individuals including semen, vaginal 
fluids, sweat, aqueous humour, urine and breast milk [14]. During the recovery process of Ebola infection, 
Patients who are able to mount an immuneresponse to the virus will begin to recover in 7 to 10days and start a 
period of prolonged convalescence [4].Most researchers and modellers of Ebola virus disease have focused their 
concern on disease regime during outbreaks. A historical account of several mathematical models has been given 
in [3]. They propose a mathematical model incorporating some vital elements bothering on transmission of 
deceased individuals during funerals and infection through contaminated environment resulting from African 
practices, hospitality and poor hygienic conditions. Other aspects include the contribution of consumption of 
bats, hunted meat and fruits from rain-forests to Ebola virus transmission.In modelling the Ebola virus disease in 
2014, [2] avers that in order to properly estimate the spread of an infection, every case of infection should be 
accounted for in the model hence the recommendation that subsequent model should include parameters that 
account for people who are not recorded as infected or removed. In recent times there is a growing concern of 
the persistence of Ebola virus in the fluids of both male and female survivors. Especially, WHO recommends for 
abstinence or condom use during sexual intercourse for at least 3 months after recovery from Ebola virus disease 
[12, 5, 15]. Also, in a research finding by [7], Ebola virus can persist in different body fluids after being cleared 
from the blood. They suggest that even though the infectious dose is low, infection risk in convalescence should 
be assumed, the precautionary principle applied and close contact of Convalescent Ebola patients should be given 
clear guidance in infection control.To the best of our knowledge, none of the mathematical models on 
Ebolaconsiders the effect of convalescence on the transmissionof the disease. Here we propose a simple 
mathematical model incorporating the contribution of convalescence in Ebola virus disease dynamics. Section 1 
includes a brief introduction whereas the formulation of the model is given in section 2. In section 3, we present 
the model analysis followed by numerical simulations in section 4. The paper was rounded up in section 5 with a 
brief discussion and conclusion.We divide the human population into compartments of susceptible, Latent, 
Infectious, Convalescence and Recovered. State variables in the model are given in Table 1 and the movement 
between compartments is summarised in Figure 1, the individual pathways to be discussed below. 
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Table 𝟏: The state variables in the model 

 

 

Figure 1:Schematic representation of Ebola transmission. 

 

𝟐  The formulation of the model 

 The entire human population is described by the equation 𝑆 + 𝐿 + 𝐼 + 𝐶 + 𝑅 = 𝑁. Ebola virus is transmitted 

when a Susceptible human comes in contact with an Infectioushuman. Susceptible individuals die at a rate 𝜇𝑆 and 

the rest progress into the 𝐿 compartment at rates𝛼𝑆𝐼 and 𝛾𝑆𝐶where𝛼and 𝛾 are  rate constants. This follows from 
the principle of mass action which we have assumed that the transition of susceptible humans into the latent class 
is proportional to the contact between susceptiblehumans and individuals in the infectious and convalescent 
states. Individuals in the L class are non-infectious and remain in this state until they transit into the infectious 

compartment at a rate 𝛽𝐿. We also assume that newly recovered individuals from Ebola only recover from disease 
symptoms but fall into a convalescent state whose infection dose has some significant risk of infection that cannot 

be ignored [12, 5, 15, 7]. We assume that individuals in the various compartments die at per capita rate 𝜇, while 

some individual in the 𝐼 class die at an additional rate 𝛹𝐼from the disease. Since there is no known literature that 
fully recovered individual can contact the disease again, we assume non transition of fully recovered individuals 
into the susceptible class and the only source of recruitment into the susceptible compartment is through natural 

birth, 𝜆𝑁,where 𝜆is the per capita birth rate constant.  Using the above assumptions,we propose the following 
system of equations. 

𝑑𝑆

𝑑𝑡
= 𝜆𝑁 − (𝛼𝐼 + 𝛾𝐶)𝑆 − 𝜇𝑆 − 𝜃𝑁2(2.1) 

State variable Description 

         N Total human population 
         S Number of Susceptible humans 
         L Latent human population 
         I 
         C 
         R 

Number of Infectious humans 
Number of humans in the convalescent state 
Recovered human individuals 
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𝑑𝐿

𝑑𝑡
= (𝛼𝐼 + 𝛾𝐶)𝑆 − (𝜇 + 𝛽)𝐿(2.2) 

𝑑𝐼

𝑑𝑡
= 𝛽𝐿 − (ѡ + 𝜇 + 𝛹)𝐼   (2.3) 

𝑑𝐶

𝑑𝑡
= ѡ𝐼 − (𝜇 + 𝜙)𝐶   (2.4) 

𝑑𝑅

𝑑𝑡
= 𝜙𝐶 − 𝜇𝑅       (2.5) 

𝑑𝑁

𝑑𝑡
= (𝜆 − 𝜇)𝑁 − 𝛹𝐼 − 𝜃𝑁2(2.6) 

where (2.6) is derived from adding (2.1) − (2.5). We impose 

𝑡 = 0,𝑁 = 𝑁0 

as initial human population. 

 

𝟐.𝟏   Parameter values 

All the model parameters are listed in Table 2 together with values taken from various sources. We note that the 
values for these parameters have some variationsbut are within ranges compatible with values given by the various 
sources.  

Table 𝟐: Model parameters and their dimensions. Values marked with (∗) are assumed values and the rest are 
obtained from data. 

Parameters Description        Value       Unit Source 

𝜶 Infection rate of susceptible 
humans by symptomatic 
individuals 

0.006 

 

ℎ𝑢𝑚𝑎𝑛−1𝑑𝑎𝑦−1 [3] 

ѡ  Rate of removal from disease 
death trap 

0.060 𝑑𝑎𝑦−1 [6, 11] 

𝛾 Infection rate of susceptible 
humans by convalescent 
individuals 

  0.0020* 

 

ℎ𝑢𝑚𝑎𝑛−1𝑑𝑎𝑦−1 assumed 

𝛽 Rate of transition from latent 
state to infectiousness 

0.20 𝑑𝑎𝑦−1 [6] 

 𝜇 Natural death rate 0.16       𝑑𝑎𝑦−1 [3] 

𝜙 Full recovery rate of 
convalescentindividuals 

     0.072 

 
 

𝑑𝑎𝑦−1    [12,5, 15] 

𝜆 Natural birth rate 0.24* 𝑑𝑎𝑦−1 assumed 

𝛹 Disease induced death rate 0.40 𝑑𝑎𝑦−1   [6, 8] 

𝜃  0.00024* ℎ𝑢𝑚𝑎𝑛−1𝑑𝑎𝑦−1 assumed 
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2.2   Nondimensionalisation 

Since the variable N is the sum of the relevant compartment values, it is convenient to re-express the 
compartment values as population fractions using  

𝑆̂  =
𝑆

𝑁
 ,  𝐿̂ =

𝐿

𝑁
 ,   𝐼 =

𝐼

𝑁
,  𝐶̂ =

𝐶

𝑁
 ,   𝑅̂ =

𝑅

𝑁
 

so that 

𝑆̂ + 𝐿̂ + 𝐼 + 𝐶̂ + 𝑅̂ = 1. 

The time derivatives for the variables will become, using variable 𝑆 as an example 

𝑑𝑁𝑆̂

𝑑𝑡
= 𝑁

𝑑𝑆̂

𝑑𝑡
+ 𝑆̂

𝑑𝑁

𝑑𝑡
= 𝑁

𝑑𝑆̂

𝑑𝑡
+ (𝜆 − 𝜇 − 𝛹𝐼 − 𝜃𝑁)𝑁𝑆̂, 

A major control strategy adopted during Ebola Virus disease outbreak has been that of tracking and monitoring of 
all people who have come in contact with a first index case in order to treat and prevent them from transmitting 
the disease at the time they become infectious. The timescale in which an infected person remains in the latent 
class before eventually becoming sick or infectious is a very important determinant of the transmission of the 

disease. Hence we scale time with the transitionparameter 𝛽, from infection to infectiousness and write 

𝑡 =
𝑡̂

𝛽
 

Assuming that 𝑁0 is the initial population of humans, we write 

𝑁 = 𝑁0𝑁̂. 

By defining the following dimensionless parameters: 

𝑏 =
𝜆

𝛽
, 𝑎 =

𝛼𝑁0

𝛽
, 𝑑 =

𝛾𝑁0

𝛽
,  𝑒 =

𝜃𝑁0

𝛽
 , 𝑓 =

𝛹

𝛽
, 𝑔 =

ѡ

𝛽
, ℎ =

𝜙

𝛽
,𝑝 =

𝜇

𝛽
, 𝑡0 =

1

𝛽
,  

and by substituting these new parameters into (2.1) − (2.6) and dropping the hats for clarity  

we get 

𝑑𝑆

𝑑𝑡
= 𝑏(1 − 𝑆) − (𝑎𝐼 + 𝑑𝐶)𝑆 + 𝑒(𝑆 − 1)𝑁 + 𝑓𝑆𝐼, (2.7) 

𝑑𝐿

𝑑𝑡
= (𝑎𝐼 + 𝑑𝐶)𝑆 − (1 + 𝑏)𝐿 + 𝑒𝐿𝑁 + 𝑓𝐿𝐼, (2.8) 

𝑑𝐼

𝑑𝑡
= 𝐿 − (𝑔 + 𝑓 + 𝑏)𝐼 + 𝑒𝐼𝑁 + 𝑓𝐼2 , (2.9) 

𝑑𝐶

𝑑𝑡
= 𝑔𝐼 − (ℎ + 𝑏)𝐶 + 𝑒𝐶𝑁 + 𝑓𝐶𝐼      (3.0) 

𝑑𝑅

𝑑𝑡
= ℎ𝐶 − 𝑏𝑅 + 𝑒𝑅𝑁 + 𝑓𝑅𝐼 (3.1) 

𝑑𝑁

𝑑𝑡
= (𝑏 − 𝑝)𝑁 − 𝑓𝐼𝑁 − 𝑒𝑁2 . (3.2) 

 

The dimensionless parameters and their values are given in Table 3. 
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Table 3: List of dimensionless parameters and their definitions in terms of the dimensional parameter values. 

Dimensional form Nondimensional parameter Value 

𝜆

𝛽
 

𝑏 

 

1.20 

 

𝛼𝑁0

𝛽
 

𝑎 3.76 

𝛾𝑁0

𝛽
 

𝑑 1.28 

 

𝜃𝑁0

𝛽
 

𝑒 0.15 

𝛹

𝛽
 

𝑓 0.20 

ѡ

𝛽
 𝑔 0.067 

𝜙

𝛽
 

 
𝜇

𝛽
 

ℎ 
 
 

𝑝 

0.36 
 
 

0.8 

 

3  Model Analysis 

3.1  Establishing the basic reproduction Number, 𝐑𝟎. 

Thebasic reproduction number is the expected number of secondary infection cases that would arise from the 
introduction of a single Ebola infected case into a fully susceptible or Ebola-free population[11].  A newly 

infectious Ebola patience in a disease-free population will infect people throughout his infectious period 
1

𝑔+𝑓+𝑝
 

ata rate(𝑎𝐼 + 𝑑𝐶)𝑆he method of next generation matrix usedin [12], [5]in determining the basic reproduction 

number of an infectious disease may be used in deriving Cpn
.  

By considering a small perturbation of the kidnap-free state (𝑆 = 1, 𝐿 = 0, 𝐼 = 0, 𝐶 = 0, 𝑅 = 0 ), 

we investigate the linearised system expressed in the form  

𝐾′ = 𝐹𝐾 − 𝑀𝐾,                                             (3.3) 

 Where 

𝐾′ =
𝑑𝑅

𝑑𝑡
, 𝐹 = [

0 𝑎 𝑑
0 0 0
0 0 0

] ,𝑀 = [
𝑎1 0 0
−1 𝑎2 0
0 −𝑔 𝑎3

] , 𝐾 = [
𝐿
𝐼
𝐶
] (3.4) 

and 𝑎1 = 1 + 𝑝, 𝑎2 = 𝑔 + 𝑓 + 𝑝,  𝑎3 = ℎ + 𝑝. 

Here, 𝐹𝐾 represents the matrix of new infection cases, 𝑀𝐾 is the transition of  these cases between 

compartments and 𝐾 the “reservoir of infection’’.This method assumes that there is a non-negative matrix  𝐺 =
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 𝐹𝑀−1 that guarantees a unique, positive and real eigenvalue strictly greater than all others. Computing the inverse 

of 𝑀 yields 

𝐺 =
1

𝑎1𝑎2
𝑎3

[
𝑐1 𝑐2 𝑐3

0 0 0
0 0 0

] , (3.5) 

Where 𝑐1 = 𝑎𝑎3 + 𝑑𝑔, 𝑐2 = 𝑎𝑎1𝑎3,  𝑐3 =  𝑑𝑎1𝑎2. 

The characteristic equation of (3.3) in terms of the eigenvalue, σ, gives the largest  

eigenvalue as σ =
𝑐1

𝑎1𝑎2𝑎3
 . Thus the basic reproduction number is expressed as  

R0 =
𝑎(ℎ + 𝑝) + 𝑑𝑔

(1 + 𝑝)(ℎ + 𝑝)(𝑔 + 𝑓 + 𝑝)
. (3.6) 

 

3.2    Positivity, Existence and Uniqeness of Solution 

The model is described in the domain 

𝛷 ∈ ℛ5 = {
𝑆, 𝐿, 𝐼, 𝐶, 𝑅, 𝑁: 𝑆 ≥ 0 , 𝐿 ≥ 0 , 𝐼 ≥  0 , 𝐶 ≥  0 , 𝑅 ≥  0 , 𝑁 > 0 ,

 𝑆 + 𝐿 + 𝐼 + 𝐶 + 𝑅 = 1.
} (3.7) 

Suppose at 𝑡 = 0 all variables are non-negative, then 𝑆(0) + 𝐿(0) + 𝐼(0) + 𝐶(0) + 𝑅(0) = 1. If 𝐿 = 0, and all 

other variables are in 𝛷, then 
𝑑𝐿

𝑑𝑡
≥ 0.  This is also the case for all other variables in (2.9) − (3.1). But if 𝑆 = 0, 

𝑏 >  𝑝and 𝑁 <
𝑏−𝑝

𝑒
,then 

𝑑𝑆

𝑑𝑡
≥ 0.If 𝑁 = 0, then  

𝑑𝑁

𝑑𝑡
= 0. But if  𝑁 > 0 and  

assuming 𝑏 >  𝑝, then with appropriate initial conditions, 
𝑑𝑁

𝑑𝑡
> 0 for all values of 𝑡 >  0. We note that the right-

hand side of (2.7) − (3.2) is continuous with continuous partial derivatives, so solutions exist and are unique. 

The model is therefore mathematically and biologically well posed with solutions in 𝛷 for all 𝑡 ∈ [0,∞). 

 

3.3    Steady state solution and stability analysis 

It can easily be shown from the system that the kidnap free state is ( 𝑆, 𝐿, 𝐼, 𝐶, 𝑅) =  ( 1, 0, 0,0,0). In the absence 

of the disease, 𝐼 = 0 and substituting this into the right hand side of(2.9)  and(3.0) we obtain𝐿 = 0.  and𝐶 = 0 

respectively. Further substitution of the values of 𝐼and 𝐶 into (3.1) gives 𝑅 = 0. For 𝑁 > 0 and using the values 

of 𝐿 and 𝐶in (2.7) gives 𝑆 = 1. Thus we are only left with the logistic equation  

𝑑𝑁

𝑑𝑡
= (𝑏 − 𝑝)𝑁 − 𝑒𝑁2,(3.8) 

Which can be expressed in the special Bernouli form 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝑘
) (3.9) 

Where 𝑟 = 𝑏 − 𝑝 and𝑘 =
𝑏−𝑝

𝑒
. Dividing (3.9) through by 𝑁2,setting 𝑛 =

1

𝑁
  and  𝑚 = 𝑛 −

1

𝑘
,we have the first 

order linear ode 

𝑑𝑚

𝑑𝑡
+ 𝑟𝑚 = 0(4.0) 
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By converting the solution of  (4.0) to the original variables we get  

𝑁(𝑡) =
𝑘𝑁(0)

𝑁(0) + (𝑘 − 𝑁(0))𝑒−𝑟𝑡
 

and as 𝑡 → ∞,  𝑁(𝑡) → 𝑘 =
𝑏−𝑝

𝑒
, the logistic curve or carrying capacity of the environment. 

The solution to the logistic equation (3.8), shows that for 𝑏 > 𝑝,𝑁(𝑡) will grow to  
𝑏−𝑝

𝑒
  if  𝑁(0) <

𝑏−𝑝

𝑒
  or 

𝑁(𝑡) will decay to this value if  𝑁(0) >
𝑏−𝑝

𝑒
. However, as we observe in the numerical solution thatin a situation 

where the basic reproduction number is less than unity, there is an initial reduction in the population before 
eventually increasing to the steady state. This shows that disease related deathr reduces the population in a fast 
timescale before the disease is brought under control. This behaviour may enable us to determine the number of 
deaths and the duration of the epidemic in dimensional terms. 

The disease free state is locally asymptotically stable when 𝑅0 < 1 and globally asymptotically stable When𝑅0 <
1,  and unstable for𝑅0 > 1, where 𝑅0 is as defined in (3.6). We note that 𝑅0 = 1  is a bifurcation surface in 
which the system changes its stability status.  

We derive sufficient conditions for local and global stability of the disease free state from all initial conditions in 

𝛷. The Jacobian matrix obtained by linearising system (2.7) − (3.1)about the disease free equilibrium point, 

( 𝑆, 𝐿, 𝐼, 𝐶, 𝑅)  =  ( 1, 0, 0,0,0)is 

 Jdf
=

[
 
 
 
 
−𝑝 0 𝑓 − 𝑎 −𝑑 0
0 −(1 + 𝑝) 𝑎 𝑑 0
0 1 −(𝑔 + 𝑓 + 𝑝) 0 0
0 0 𝑔 −(ℎ + 𝑝) 0
0 0 0 ℎ −𝑝]

 
 
 
 

.                                                 

 

Lemma 3.1The disease free equilibrium is locally asymptotically stable if𝑅0 < 1and  

unstable if𝑅0 > 1. 

Proof   The characteristic polynomial equation of (3.6) with eigenvalues, Ƙ is 

(𝑝 +  Ƙ)2{Ƙ3 + (𝑐1 + 𝑐2 + 𝑐3)Ƙ
2 + [𝑐3(𝑐1 + 𝑐2) + 𝑐1𝑐2 − 𝑎]Ƙ + 𝑐1𝑐2𝑐3 − (𝑎𝑐3 + 𝑔𝑑)} = 0 

With two of the eigenvalues strictly negative leaving the cubic equation 

Ƙ3 + (𝑐1 + 𝑐2 + 𝑐3)Ƙ
2 + [𝑐3(𝑐1 + 𝑐2) + 𝑐1𝑐2 − 𝑎]Ƙ + 𝑐1𝑐2𝑐3 − (𝑎𝑐3 + 𝑔𝑑) = 0, (4.1) 

where 

𝑐1 = 1 + 𝑝, 𝑐2 = 𝑔 + 𝑓 + 𝑝 and 𝑐3 = ℎ + 𝑝. 

Multiplying and dividing the coefficient of Ƙ  by 𝑐3, and also adding 𝑔𝑑 to and subtracting same from the 

coefficient of Ƙ gives 

Ƙ3 + (𝑐1 + 𝑐2 + 𝑐3)Ƙ
2 +

1

𝑐3
{𝑐3

2(𝑐1 + 𝑐2) + 𝑔𝑑 + 𝑐1𝑐2𝑐3(1 − R0)}Ƙ + 𝑐1𝑐2𝑐3(1 − R0) = 0,(4.2) 

 whereR0 is as defined in (3.6) above.If𝑅0 < 1, then the coefficients of thecubic polynomial of (4.2) are all 
positive and non-zero; so by the Descartes' rule of signs there is no positive real eigenvalue. This means there are 
3 negative real eigenvalues or 1 negative real eigenvalue and a complex conjugate pair. Thus by defining the 
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coefficients of Ƙ3,  Ƙ2, Ƙ   and the constant term in (4.2)as 𝐴1, 𝐴2, 𝐴3 and 𝐴4 respectively Routh Hurwitz 
stability condition for a cubic polynomial as stated in  

[1] and given in this case by 𝐴2𝐴3 > 𝐴1𝐴4 is satisfied.           

We observe that if𝑅0 > 1, the constant𝐴4is negative and the sequence of coefficients{𝐴𝑛} 

will have only one sign change irrespective of the sign of 𝐴3. Thus, by using Descartes' rule of sign there exists 
one positive real eigenvalue and we conclude that the disease free state is unstable if  

𝑅0 > 1. When𝑅0 = 1, 𝐴4  = 0 and(4.2) has zero eigenvalue, which shows that 𝑅0 = 1 is  a bifurcation surface 

in (𝑎, 𝑑, 𝑓, 𝑔, ℎ, 𝑝) parameter space. 

Lemma 3.2The disease free equilibrium is globally asymptotically stable in 𝛷 if   

𝑅0 < 1. (4.3) 

Proof   Consider the function 𝛹 ∶ {(𝑆, 𝐿, 𝐼, 𝐶, 𝑅) ∈ 𝛷} → ℛ, where 

 𝛹 =
(1+𝑝)(1−𝐿)2

2(1+𝑏)
+

𝑎(1−𝐼)2

2(𝑓+𝑝)(𝑔+𝑓+𝑏)
+

𝑑(1−𝐶)2

2(ℎ+𝑝)(ℎ+𝑏)
+

(1+𝑝)(1−𝑅)2

2ℎ
(4.4) 

We note that 𝛹 ≥ 0 and is continuously differentiable on the interior of 𝛷. We shall show that the disease free 

equilibrium is a global minimum of 𝛹 on 𝛷 if (4.3) holds. The derivative of 𝛹 computed along solutions of the 
system is 

−(
1+𝑝

1+𝑏
) (𝑎𝐼 + 𝑑𝐶)𝑆(1 − 𝐿) + (1 + 𝑝)(𝐿 + 𝐼) − (1 + 𝑝)(𝑆 + 𝐿 + 𝐼 + 𝐶) − (1 + 𝑝)𝐼 − (1 + 𝑝)𝐿2 −

𝑒(1+𝑝)𝐿𝑁(1−𝐿)

1+𝑏
−

𝑓(1+𝑝)𝐿𝐼(1−𝐿)

1+𝑏
−

𝑎𝐿(1−𝐼)

(𝑓+𝑝)(𝑔+𝑓+𝑏)
+

𝑎𝐼

𝑓+𝑝
−

𝑎𝐼2

𝑓+𝑝
−

𝑎𝑒𝑁𝐼(1−𝐼)

(𝑓+𝑝)(𝑔+𝑓+𝑏)
−

𝑎𝑓𝐼(1−𝐼)

(𝑓+𝑝)(𝑔+𝑓+𝑏)
−

𝑑𝑔(1−𝐶)

(ℎ+𝑝)(ℎ+𝑏)
+

𝑑𝐶

ℎ+𝑝
−

𝑑𝐶2

ℎ+𝑝
−

𝑑𝑒𝑁𝐶(1−𝐶)

(ℎ+𝑝)(ℎ+𝑏)
−

𝑑𝑓𝐼𝐶(1−𝐶)

(ℎ+𝑝)(ℎ+𝑏)
− (1 + 𝑝)𝐶 − 𝑏(1 + 𝑝)𝑅(1 − 𝑅) −

𝑒(1+𝑝)𝑁(1−𝑅)

ℎ
−

𝑓(1+𝑝)𝐼𝑅(1−𝑅)

ℎ
 

     (4.5) 

Further simplification of (4.5) leads to 

𝑑𝛹

𝑑𝑡
= −

(1 + 𝑝)[{(𝑎𝐼 + 𝑑𝐶)𝑆 + 𝐿(𝑒𝑁 + 𝑓𝐼)}(𝑆 + 𝐼 + 𝐶 + 𝑅) + {(1 + 𝑏)(𝑆 + 𝐿2 + 𝐶)}]

1 + 𝑏

−
{𝑎𝐼2(ℎ + 𝑝) + 𝑑𝐶2(𝑓 + 𝑝)}

(𝑓 + 𝑝)(ℎ + 𝑝)
−

𝑎{𝐿 + 𝐼(𝑒𝑁 + 𝑓)}(𝑆 + 𝐿 + 𝐶 + 𝑅)

(𝑓 + 𝑝)(𝑔 + 𝑓 + 𝑏)

−
𝑑{𝑔 + 𝐶(𝑒𝑁 + 𝑓𝐼)}(𝑆 + 𝐿 + 𝐼 + 𝑅)

(ℎ + 𝑝)(ℎ + 𝑏)
−

(1 + 𝑝){𝑒𝑁 + 𝑅(𝑏ℎ + 𝑓𝐼)}(𝑆 + 𝐿 + 𝐼 + 𝐶)

ℎ

+
{𝑎 − (𝑓 + 𝑝)(1 + 𝑝)}𝐼

𝑓 + 𝑝
+

{𝑑 − (ℎ + 𝑝)(1 + 𝑝)}𝐼

ℎ + 𝑝
 

We can see clearly that 
𝑑𝛹

𝑑𝑡
<  0 when 

𝑎 < (𝑓 + 𝑝)(1 + 𝑝), 𝑑 < (ℎ + 𝑝)(1 + 𝑝).      (4.6) 

Simple deduction from(3.6) shows that𝑅0 < 1whenever (4.6) is satisfied. In fact, for (𝐿, 𝐼, 𝐶, 𝑅) = (0,0,0,0),
𝑑𝛹

𝑑𝑡
≤ 0  and (𝐿, 𝐼, 𝐶, 𝑅) is the largest positively invariance subset in the interior of 𝛷 and by LaSalle's invariant 

principle [10], (𝐿, 𝐼, 𝐶, 𝑅) → (0,0,0,0) as 𝑡 → ∞ while 𝑆 → 1 on the boundary of 𝛷. Thus, the disease free state 

is globally stable if  𝑅0 < 1. 
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4    Numerical Simulations 

The numerical solution is obtained by using MATLAB's ode15𝑠, a variable order Runge-Kutta method with a 

relative and absolute tolerance of 10−9. The parameters used for the simulations as defined in Table Table 3 are 

𝑏 =  1.20, 𝑎 =  3.76,𝑑 = 1.28, 𝑒 = 0.15, 𝑓 =  0.20, 𝑔 =  0.067, ℎ =  0.36, 𝑝 =  0.80. At time 𝑡 =  0 we 

have the following initial conditions in the proportions; 𝑆 = 0.99, 𝐿 = 0.01, 𝐼 = 0, 𝐶 = 0, 𝑅 = 0, 𝑁 = 1. This 
is a situation where the entire vulnerable human population is exposed to a small fraction of infected humans. The 
program was run in MATLABandMAPLEwith different sets of initial  conditionsand the qualitative form of the 
steady state solutions in all cases were the same, although the system gets to a steady state faster as the initial 

fraction of infected humans increases.In Figure 2𝑎, the proportion of susceptible human population drops as  

 

 

Figure 2: Results showing the effect of small amount of infected human on evolution of Ebola epidemic in a 

disease free society, where 𝑡 = 1, represents approximately 5 days in real time. The initial conditions used are𝑆 =
0.99, 𝐿 = 0.01, 𝐼 = 0, 𝐶 = 0, 𝑅 = 0, 𝑁 = 1and the parameter values are given in Table 3. 

more people contact the disease while in Figure 2b, more of the recovered humans merely assume a convalescent 
state whereas the entire population is gradually increasing in Figure 2d. In other to study the impact of 
convalescent humans on the evolution of the disease we consider a situation where there is small amount of 
convalescent humans in the absence of infected and infectious individuals in figure 3. The quality of the solutions 
is not significantly different from that in Figure 2. However, the initial amount of convalescent individuals drops 
sharply in Figure 2a and later grows to a steady state. Consequently, the fraction of recovered humans peaks in a 
short time scale and drops for a period and later increases to a steady. This is an expected behaviour as 
proportion of the convalescent humans acquire full recovery in a short while whereas the rest generate infection. 
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Figure 4 represents a scenario where the  

 

Figure 3: Results showing the effect of small amount of convalescent human on evolution of Ebola epidemic in a 

disease free society. The initial conditions used are𝑆 = 0.99, 𝐿 = 0, 𝐼 = 0, 𝐶 = 0.01, 𝑅 = 0, 𝑁 = 1and the 
parameter values  are the same as those in Figure 2. 
 

disease could be eliminated by carefully choosing the values of some sensitive parameters connected with the 
infection rate of susceptible humans by symptomatic individuals, the rate of removal from disease death trap and 
the infection rate of susceptible humans by convalescent individuals. The entire population grows to a steady 
based on the carrying capacity of the environment as the disease classes recover. The effects of different values 

 

 

0 20 40
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

t

C
on

va
le

sc
en

t i
nd

iv
id

ua
ls

0 20 40
0

1

2

3

4

5

6

7
x 10

-3

t
R

ec
ov

er
ed

 in
di

vi
du

al
s

a b

0 500 1000
0

0.2

0.4

0.6

0.8

1

t

H
um

an
 fr

ac
tio

ns

 

 
S

L

I

0 500 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

t

H
um

an
 fr

ac
tio

ns

 

 
C

R

a
b

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

73 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

 

Figure 4: Results showing the disease profile on the entire population when the control parameter, 𝑅0 < 1. The 

initial conditions and parameter values used for the simulations are the same as those in Figure 2 except that 𝑎 =
1.799, 𝑑 = 2.087 and = 0.9 . 

of 𝑎0 on the various fractions of the human population are demonstrated in Figure 5𝑎, 𝑏, 𝑐, 𝑑. We investigate 

each of the human sub-populations as 𝑎0 varies from 0.00001 to 0.2 and the results show  there is a unique 

steady state for each human compartment irrespective of the value of 𝑎0.  Figure 6 

 

 

Figure 5: Results showing the effect of introducing different amount of infected humans on the different 

compartments. The parameter values used for the simulations are the same as those in Figure 2 except that for the 
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initial conditions, we have used 𝑆 = 1 − 𝑎0, 𝐿 = 𝑎0, 𝐼 = 0, 𝐶 = 0, 𝑅 = 0,𝑁 = 1 with different values of 𝑎0, as 
shown in the graphs. 

shows the relationship between the basic reproduction number and the disease profile as it affects the 
population.In order to demonstrate the impact of the basic reproduction number on the dynamics of the system, 

we plot the steady states of the various compartments against the basic reproduction number (𝑅0), in which we 

show a disease free state when 𝑅0 is less than unity and for 𝑅0 > 1the disease invades the population.The values 

of 𝑅0 were obtained by 𝑎and 𝑑and 𝑅0 = 1.00correspondsto 𝑎 = 2.76 and 𝑑 = 1.28 .Figure 7 is a bifurcation 
diagramshowing a switch froma disease free state to an endemic state. The result is obtained by drawing the steady 
state of 

 

Figure 6: Results showing the disease free state when 𝑅0 < 1 and the disease persistent state for 𝑅0 > 1  by 

varying the value of 𝑅0 from 0 to 3.1. The parameter values used to obtain these results are given in Table 3. We 

used the parameters, 𝑎and 𝑑to change 𝑅0 where 𝑅0 = 1.00 corresponds to 𝑎 = 2.76 and = 1.28. 

covalescent individuals against different values of 𝑅0. The plot shows a transcritical bifurcation in the vicinity of 

R0 = 1, as is expected from the analysis. Although some uncertainty still surrounds our quest on whether or not 

the diseases invades at  R0 = 1, the disease free state is stable for values of R0 < 1, but becomes unstable when 

R0 > 1 whereas, the disease persistent state becomes stable as expected.  

 

Figure 7: Basicreproduction number (𝑅0) bifurcation diagram. The curve shows a transcritical bifurcation 

obtained by drawing the steady states of convalescent individuals against different values of 𝑅0 ranging from 0 to 

3.1. Parameter values are the same as those in Figure 6. 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

75 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

5   Discussion and conclusion 

Our model describes a typical situation of Ebola epidemic as shown by the value of𝑅0 = 2.00 using the data in 
Table 3. This value falls within the estimates given in [13, 9]. 

The numerical solution (Figure 3) shows that about 20% of the entire population will be engulfed by the disease 
within a period of three months. Although only a small proportion of the population seem to recover from the 
disease, more of this number only assume a convalescent state instead of full recovery, which portends great 
danger of unsuspected epidemic due to the findings of [7].  

The economic cost of the disease to households and government is enormous since the sick would require 
medical attention in the hospital resulting in a huge loss of man-hours. In order to bring a disease under control in 

a population of varying size, we need to reduce the Basic reproduction number,𝑅0, below a threshold value with 
increasing time.  

This is demonstrated by the numerical solution in Figure 4a,b.From the results of our analyses in section 3.3. It is 

worth noting that reducing a or𝑑only cannot drag 𝑅0 into extinction but can only cause it to fall below the 
threshold value of 1 depending on the values of the model parameters. However, significant disease control 
strategies targeting infection rates of infectious humans, a, and convalescent individuals, d,could potentially be 

moreeffective since these would drastically reduce𝑅0 to zero. This could be done through rigorous quarantine and 
tracking of allindividuals who may have come into contact with infected patients in order to prevent them from 
infectiousness and further contact with susceptible humans. In the other hand, a careful preventive and risk 
control management of the convalescent period could help reduce the infection rate of convalescent individuals 
and facilitate their full recovery. 

 The analyses suggest that the disease free state is locally and globally asymptotically stableWhen𝑅0 < 1,  and 

unstable for𝑅0 > 1. This is further confirmed by the numerical solution. The contribution of convalescent 
individuals in the transmission of the disease cannot lead to the eradication of kidnapping but could only help in 
the management and control of the crime.  
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