
 

 

 

International Journal of Applied Science and Research 

 

99 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

   Precise Evaluation of Execution Cost of Sequence Rotation by Three-Way-Reversals 
 

Joseph A. ERHO1 and Juliana I. CONSUL2 
 

Niger Delta University,  
Mathematics/Computer Science Department,  Nigeria 

 
 

IJASR 2019 
VOLUME 2 
ISSUE 5 SEPTEMBER - OCTOBER                                                                                      ISSN: 2581-7876 

Abstract – Sequence blocks exchange or rotation often requires greatest common divisor (gcd) calculated or 
three-way-reversal swaps of elements to accomplish it.  Using three way sequence reversal has somewhat posed 
challenges in effort to give exact number of index comparisons and elements moves.  This is commonly seen with 

the use of terms or operators  like "about", "", or "" to indicate approximate or possible number of 
comparisons and/or assignments.  In this paper, we propose concise way of expressing the precise and exact 
number of comparisons and thus, number of moves in the three-way-reversal based rotation using simple 
equation. With five input scenarios, we show how the equation produces precise values and give reason why 
previous studies had to rely on approximation.  The current study is useful in complexity analysis of algorithm 
such as in-place merging in sorting.  The data considered, with their computed outcome, quickly suggest the need 
for further work on gcd based rotation.   

Keywords: Sequence block exchange, sequence rotation, sequence reversal, gcd cycle rotation, rotation 
complexity analysis, algorithm, equation. 

Introduction  
 
While merging subsequences in 'in-place' sorting algorithms, we often encounter the leading choices of gcd 
calculated exchange of blocks or three way reversal of the input [2] among others [4].  Though experts tend to 
favour the use of gcd calculated exchange of blocks [5,7, 8, 9] , it is increasingly common to see many using three 
stages reversal approach [6, 9,11].  Experts believe that gcd calculated exchange of blocks is more efficient than 
three way reversal [3].  This argument is usually based on smaller number of elements comparisons with small 
sizes of indexes involved, which speeds up  [10].  But this is not always true. 

For instance, a live database table comprising of over seven millions students exams scores, generated over a 
period of time was to be analysed.  The records per course, per student, per class, per programme, etc were to be 
sorted by the scores key before analysis.  The scores ranging from -1 to 100 were small enough values for 
comparison as against indexes that range in the millions.  Items comparisons and moves in this case were trivial, 
as against indexes comparisons and moves.  So, the efficiency of gcd calculated rotation of sequence blocks would depend on the 
size of individual items, number of items, and/or the range of involved indexes in the comparison and moves.  Besides, gcd 
calculated block exchange is more complicated [11].  Therefore, it is not surprising to see increasing interest on 
three-way-reversal based rotation.  It is easy and more "effective" method in practice [4] and considered to be 
folklore. 

Unfortunately, those who are in favour of three way reversal for block rotation hardly give a precise value for the 
execution complexity cost for it [10, 11]; and sometimes even erroneous values are presented [2].  Typically, while 

[10] accurately determined the number of items moves to be "...exactly ⌊
𝑗−𝑖+1

2
⌋ swaps." for "𝐼𝑁𝑉𝐸𝑅𝑆𝐸(𝑖, 𝑗)" (a 

culture we would want to uphold), its block exchange counterpart could not have a fixed precision decomposed 

result that should naturally arise from already calculated exact values, where "𝐼𝑁𝑉𝐸𝑅𝑆𝐸(𝑖, 𝑗)" is inverse function 

on sequence "segment" spanning 𝑖 to 𝑗.  Rather, it is computed as " 𝐵𝐿𝑂𝐶𝐾_𝐸𝑋𝐶𝐻𝐴𝑁𝐺𝐸_1(𝑐, 𝑙1, 𝑙2) = ⋯ =

⌊
𝑙1

2
⌋ + ⌊

𝑙2

2
⌋ + ⌊

𝑙1+𝑙2

2
⌋ ≤ 𝑙1 + 𝑙2" - an infinite range, bounded above by (𝑙1 + 𝑙2), where 𝑐,  𝑙1 and 𝑙2 are the start of 

sequence "segment", sizes of first and second subsequences, respectively.  Interestingly, the same author in [10], 

Symvonis, reviewed it later "... that about 𝑙1 + 𝑙2 swaps are performed... " [11].  We note that the use of "about" 
obviously lack fixed result that should come from addition of exact values.   It becomes a little more worrisome 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

100 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

when [2] concluded that the rotation "...uses a total of  𝑢 + 𝑣 − ∆.  Where ∆= 0 if both 𝑢 and 𝑣 are even, 1 if either but 

not both 𝑢 or 𝑣 is odd, 2 if both 𝑢 and 𝑣 are odd...".  The conditions that ∆ equals 1 or 2 are erroneous, as will be 
shown in section 4. 

In contrast, gcd based block rotation is often given a precise value for number of moves of items. It is usually 

given as 𝑔 (
|𝑈𝑉|

𝑔
+ 1) = |𝑈𝑉| + gcd (|𝑈|, |𝑉|) [1]. Here, 𝑔 = gcd (|𝑈|, |𝑉|) represents the number of cycles 

required to perform the rotation task while 𝑈 and 𝑉 are two blocks.  Even more precision is given to it as: 

"... can be reduced to |U|+|V|+ 1 if the order of elements in the larger-sized one of U and V is kept 
unchanged, and 2min(|U|; |V|) + 1 if the order of elements in the smaller-sized one of U and V is kept 
unchanged" [1] 

though, number of index comparison is not included.  Thus, it is desirable that a precise computation be given 
to the number of moves and index comparisons of a three way inversion based rotation requires.  The 
intent is to provide sorting algorithm analysts a simple and concise equation that enables them analytically give 
precise results for given inputs.  The study is also aimed at abolishing the inconsistencies of results inherent with 
the use of existing method for evaluating sequence rotation by three-way-reversal. 

In this research a numerical evaluation method in five different input scenarios are used to show the correctness 
of the equation and pictorial illustration are used when necessary to clarify ideas. 

In the rest of this paper, we express the rudiments of sequence reversal in section 2, which is the working tool for 
rotation.  Section 3 discuses the fundamentals of sequence rotation and states our proposed equation.  We prove 
this numerically in section 4, using the results to show the correspondence between the usual evaluation and our 
new method.  Section 5 analyses and discusses the results of the numerical evaluation, explaining the root cause of 
the inconsistencies presented in the literature. We conclude in section 6 with some direction for further works. 

Sequence Reversal 

A sequence reversal (or inversion) is simply a consecutive swapping of opposite items, from both ends of the sequence, until the mid 

item is met.  If sequence 𝐴 = {(𝑎𝑖)𝑖∈ℕ:  𝑎𝑖 ≤ 𝑎𝑖+1} , then 𝐴−1 = {(𝑎𝑗)
𝑗∈ℕ

: 𝑎𝑗 ≥ 𝑎𝑗+1}  would be the 

reverse/inverse of 𝐴.  Notice that the set 𝐴 has single item; and that single item is a sequence of elements defined 

by the predicate of the set.  For example, to reverse (or compute reversal for) a sequence 𝐴 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓)}, 

we simply swap or exchange opposite items 𝑎 and 𝑓, 𝑏 and 𝑒,  and the mid items 𝑐 and 𝑑 to obtain 𝐴−1 =
{(𝑓, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎)}.   Where only a single item is remaining (at the middle) a valid pair cannot be constituted.  And 
it is worthless to swap an element with itself. 

The reversal computation requires a space complexity of  𝑂(1) i.e. a constant one memory space to keep single 

temporary value for the swap.  Hence, it is an in-place merging process.  Also, it requires ⌊
𝑛

2
⌋ + 1  comparison of 

index, zero (0) comparison of items, and 3 ⌊
𝑛

2
⌋ moves of items.  This is typical 𝑂(𝑛) complexity, with high 

efficiency since no items comparison is required.  For instance, from the sequence 𝐴 above, index of item 𝑎 been 

compared with index of item 𝑓 is counted as one (1) comparison and that of 𝑏 with 𝑒 is another.  So for this 

sequence with 6 items would have ⌊
6

2
⌋ + 1 = 4 index comparisons.  Note that the +1 is the last comparison (i.e. 

exit test) that terminates the loop and thus not included in the number of moves. We adopt the Visual Studio 
C++ sequence reversal (or inversion) and apply it 3 time for rotation. 

Sequence Rotation 

By rotation of items at positions 𝑝 to 𝑟 about 𝑞 to (𝑞 + 1) pivot (i.e. (𝒒, 𝒒 + 𝟏) the pivot) [12], we mean 3 

consecutive stages of reversals: (1) reversing subsequence 𝑝 to 𝑞, (2)  subsequence (𝑞 + 1) to 𝑟, and finally, (3) 

sequence  𝑝 to 𝑟.  The effect is like holding subsequence spanning positions 𝑝 to 𝑞 at point 𝑞 and sliding the 𝑞 end to 𝑟, then 

sliding that of (𝑞 + 1) to 𝑝, making (𝑞, 𝑞 + 1) the pivot.  Now the original positions of 𝑝 and 𝑟 can overlap at the 

original positions of 𝑞 and (𝑞 + 1), depending on the length of 𝑝 to 𝑞 and  (𝑞 + 1) to 𝑟.  (See the Figure 1) 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

101 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

 

 

 

 

 

 

Figure 1:  sliding effect of sequence rotation 

By extension of reversal complexity, sequence rotation of 𝑚 + 𝑛 items requires exactly 

⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚 + 𝑛

2
⌋ + 3 ≡ 𝑚 + 𝑛 + 3 − 𝑒𝑣,                                                  (1) 

where  𝑒𝑣 = {
𝑚 mod 2,   𝑖𝑓  𝑚 mod  2 =  𝑛 mod  2
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 

comparison of indexes (𝑒𝑣 stands for erhova), zero (0) comparison of items, and 

     3 (⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋) = 3(𝑚 + 𝑛 − 𝑒𝑣)                                                   (2) 

moves of items.  Here, we have introduced a function 𝑒𝑣 that enforces the precision on the number of 
comparison and moves. In section 4, we show five scenarios that prove equations (1) and (2) correct.  First, we 

use Figure 2 below to illustrate that the number of index comparisons is actually  ⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋ + 3 leading 

to exactly 3 (⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋) elements moves.  This move expression is common in the literature [6, 9,11].   

In Figure 2, sequence (a) is rotated using (b), (c) and (d) stages reversals to obtain (e) 

(a) 

 

 

 

(b)           (c) 

 

(d) 

 

 

 

 

(e) 

 

𝑞1 

𝑝1 

𝑟1 

𝑞1 + 1 

1 3 4 5 6 7 

 

8 

 

9 

 

10 

 

11 12 

  slide dots to end of diagonals 

  slide diagonals to beginning of dots 

𝑟 

𝑞 + 1 

1 3 4 5 6 

𝑝 

𝑞 

7 

 

8 

 

9 

 

10 

 

11 12 

1 2 3

  

4 5 6 7 8 9 1

0 

1

1 

12 13 14 
3 3 4 4 5 6 7 7 7 8 8 9 10 11 

6 7 8 9 1

0 

1

1 

12 13 14 

3 3 4 4 5 6 7 7 7 
1 2 3

  

4 5 

8 8 9 10 11 

1 2 3

  

4 5 6 7 8 9 1

0 

1

1 

12 13 14 
11 10 9 8 8 7 7 7 6 5 4 4 3 3 

1 2 3

  

4 5 6 7 8 9 1

0 

11 12 13 14 

8 8 9 10 11 3 3 4 4 5 6 7 7 7 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

102 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

Figure. 2: (a) the sequence to rotate, (b) reversal of left subsequence, (c) reversal of right subsequence, (d) 
reversal of the resulting sequence of the previous two stages, (e) the final result of rotation. 

From the diagram, we rotate the sequence from index 1 to 14 about index (5,6) pivot using three-stage reversals.  
Arrow headed arcs are used to show pair of indexes that are comparable.  We want to establish a convention that 
there must be two distinct valued indexes making a pair for comparison to be valid and/or efficient. (See previous section)  That is, 

given two subsequence 𝐴 ∈ 𝑋 and 𝐵 ∈ 𝑋, with item 𝑎𝑖 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵, where 𝑋 = (𝐴, 𝐵), indexes 𝑖 and 𝑗, 𝑖 ≠

𝑗  for items forming a pair, 𝑖 < 𝑗  constitutes a valid and/or efficient comparable pair.  Any time inefficient comparison is 
made the process must terminate immediately without elements assignment.   Observe that the innermost arcs 
point to invalid comparable pair. They simply mark the last tests that terminate the loops and obviously add up to 
the number of index comparisons. 

Numerical Evaluation 

From Figure 2, the first 5 indexes comparison has 3 arcs, equivalent to ⌊
5

2
⌋ + 1, the second set of 9 index has 5 

arcs corresponding to ⌊
9

2
⌋ + 1, and finally, overall reversal of all 14 items use 8 arcs equivalent to ⌊

14

2
⌋ + 1 

comparisons.  The addition of 1 to each reversal stage corresponds to the innermost arcs that points to invalid 

comparable pair - singleton.  So rotation by reversal uses exactly  ⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋ + 3 index comparisons.  As 

such, it uses exactly 3 (⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋) elements moves.  Notice the disappearance of the constant 3 in both 

expressions for data moves.  It represents the three looping termination index tests.  Next, we show our 

equivalent expression in the comparison equation ⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋ + 3 = 𝑚 + 𝑛 + 3 − 𝑒𝑣 using the five 

scenarios. 

Scenario 1: both 𝑚 and 𝑛 are odd but 𝑚 ≠ 𝑛, 

Let 𝑚 = 5 and 𝑛 = 9. From equation (1), 

⌊
5

2
⌋ + ⌊

9

2
⌋ + ⌊

5+9

2
⌋ + 3 = 2 + 4 + 7 + 3 = 16. 

Equivalently, 𝑚 + 𝑛 + 3 − 𝑒𝑣 = 5 + 9 + 3 − 𝑒𝑣 = 17 − 𝑒𝑣. 

Now 𝑒𝑣 = {
𝑚 mod 2,   𝑖𝑓  𝑚 mod  2 =  𝑛 mod  2
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

 

and  𝑚 mod 2 = 5 mod 2 = 1, also 𝑛 mod 2 = 9 mod 2 = 1 

So, since 𝑚 mod 2 =  𝑛 mod 2, then 𝑒𝑣 = 𝑚 mod 2, i. e.  𝑒𝑣 =  5 mod 2 =  1 

thus 𝑚 + 𝑛 + 3 − 𝑒𝑣 = (5 + 9 + 3) − 1 = 17 − 1=16 ∎ 

Scenario 2: both 𝑚 and 𝑛 are odd and 𝑚 = 𝑛, 

Let 𝑚 = 7 and 𝑛 = 7. From equation (1) 

⌊
7

2
⌋ + ⌊

7

2
⌋ + ⌊

7 + 7

2
⌋ + 3 = 3 + 3 + 7 + 3 = 16 

and since 𝑚 mod 2 =  𝑛 mod 2 = 1, 𝑚 + 𝑛 + 3 − 𝑒𝑣 = (7 + 7 + 3) − 1 = 17 − 1 = 16 ∎ 

Scenario 3: 𝑚 is odd but 𝑛 is even or vice versa, 

Let 𝑚 = 5 and 𝑛 = 8. From equation (1) 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

103 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

⌊
5

2
⌋ + ⌊

8

2
⌋ + ⌊

5 + 8

2
⌋ + 3 = 2 + 4 + 6 + 3 = 15 

Observe that even though only 𝑚 or 𝑛 of the two is odd, the dual-odd-values phenomenon surfaces in the 

combined ⌊
5

2
⌋  and ⌊

5+8

2
⌋.  Now, since 𝑚 mod 2 ≠  𝑛 mod 2, then 𝑒𝑣 = 1. 

Equivalently, 𝑚 + 𝑛 + 3 − 𝑒𝑣 = (5 + 8 + 3) − 1 = 16 − 1 = 15. 

Scenario 4: both 𝑚 and 𝑛 are even and 𝑚 = 𝑛, 

Let 𝑚 = 8 and 𝑛 = 8. From equation (1) 

⌊
8

2
⌋ + ⌊

8

2
⌋ + ⌊

8 + 8

2
⌋ + 3 = 4 + 4 + 8 + 3 = 19 

now, 𝑚 mod  2 =  𝑛 mod  2, Interestingly 𝑚 mod  2 = 0 and so  𝑒𝑣 = 0 

Equivalently, 𝑚 + 𝑛 + 3 − 𝑒𝑣 = (8 + 8 + 3) − 0 = 19 − 0 = 19 

Scenario 5: both 𝑚 and 𝑛 are even but 𝑚 ≠ 𝑛, 

Let 𝑚 = 30 and 𝑛 = 56. From equation (1) 

⌊
30

2
⌋ + ⌊

56

2
⌋ + ⌊

30 + 56

2
⌋ + 3 = 15 + 28 + 43 + 3 = 89 

now, 𝑚 mod 2 =  𝑛 mod 2, 𝑚 mod 2 = 0 and so  𝑒𝑣 = 0. 

Equivalently, 𝑚 + 𝑛 + 3 − 𝑒𝑣 = (30 + 56 + 3) − 0 = 89 − 0 = 89 

Discussion 

From the numerical solutions, it was clear that ⌊
𝑚

2
⌋ + ⌊

𝑛

2
⌋ + ⌊

𝑚+𝑛

2
⌋ + 3 ≡ 𝑚 + 𝑛 + 3 − 𝑒𝑣.  An interesting 

conclusion about this proof was that whenever both 𝑚 and 𝑛 were even, the value of 𝑒𝑣 (erhova) was always 0 

but 1 otherwise.  Also, 𝑒𝑣 had exact value that depended on 𝑚 and 𝑛. 

The 𝑒𝑣 value evolved from the floor function that truncated the fractional part of a term division. Whenever at 

least one of 𝑚 and 𝑛 was odd, exactly two terms of ⌊
𝑚

2
⌋,  ⌊

𝑛

2
⌋, and  ⌊

𝑚+𝑛

2
⌋ generated fractions (precisely 0.5 each) 

to be discarded.  Each of these two fractions indicated a single remaining index that needed not be compared in 
their respective subsequences.  These singular index from each of the two terms would constitute a valid 
comparable pair of indexes, but never duly participated in their respective subsequence index comparisons.  The 
non involvement of this invalid pair in comparison demands that we subtract it from the overall number of valid 

pair comparison and the constant 3. This is what is being determined by the value 𝑒𝑣 =

{
𝑚 mod  2,   𝑖𝑓  𝑚 mod  2 =  𝑛 mod  2
1,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

 

This fact has not been properly considered in previous studies, but  merely relied on approximate values. Such 

invalid pair did not exist though if both 𝑚 and 𝑛 were even.  As such 𝑒𝑣 = 0,  ∀ 𝑚, 𝑛, irrespective of whether 

𝑚 = 𝑛 or not. 

Now, where both left and right subsequences are equal in length (i.e. 𝑤 = 2𝑚), a more efficient way is not to use 
three-way-reversal rotation.  We simply apply direct swapping of corresponding items on both sides, resulting in 

just  
𝑤

2
+1 comparison of indexes, zero (0) comparison of items and 3

𝑤

2
 moves of items.  So, complexity of the 

rotation is 𝑂(𝑤), where 𝑤  is the sum of sizes of both left and right. It could be seen immediately that applying 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org


 

 

 

International Journal of Applied Science and Research 

 

104 www.ijasr.org                                                               Copyright © 2019 IJASR All rights reserved   

 

direct swapping of corresponding items, if both sides are equal, is far more efficient than three-stage reversal of 
input. 

Preliminary Conclusion 

This paper presented a simple and concise equation that enables sorting algorithm analysts determines precisely 
the complexity cost of sequence rotation by reversal for given inputs. With precise complexity evaluation, 
inconsistencies of results inherent with old methods can now be abolished. 

It has been shown that rather than having approximate or range of values for complexity cost of rotation by 
three-way-reversal, we can actually compute precise value for given inputs.  The reason the existing methods fails 

to give fixed result was also discussed and to fix that we introduced the function 𝑒𝑣 into the equation. 

With the accuracy of the results, we hope to investigate also the complexity of gcd based rotation on data (such as 
the data case in section 1) that have sizes much smaller than sizes of indexes and those whose elements and 
indexes sizes average out; since the common assumption has always been 'index is small as compare to item sizes'. 

References  

1. Chen J. (2003) Optimizing stable in-place merging, Theoretical Computer Science, VOL. 302, 191–210   
https://core.ac.uk/download/pdf/82464674.pdf (Accessed  4 Sept 2019) 

2. Coates-Evelyn D. (2004)  In-Place Merging Algorithms, Technical Report, Department  of 
Computer Science, King's College London str. 1-46 
 https://nms.kcl.ac.uk//informatics/techreports/papers/TR-04-05.pdf  (Accessed August 29, 
2019) 

3. Dudzinski, K., Dydek, A. (1981)  On a stable minimum storage merging algorithm, Information 
Processing Letters, VOL. 12, 5 

4. Furia C. A. (2015)  Rotation of Sequences: Algorithms and Proofs, ETH Zurich, Switzerland  
https://arxiv.org/abs/1406.5453 (Accessed 29 Aug 2019) 

5. Geffert V.,  Katajainen J., Passanen T. (2000) Asymptotically Efficient In-Place Merging, Theoret. 
Comput. Sci., VOL. 237,  159-181 

6. HUANG't  B-C. and LANGSTON M. A. (1992) Fast Stable Merging and Sorting in Constant Extra 
Space, The Computer Journal, VOL. 35, No 6, Page 643-650 

7. Kim P., Kutzner A. (2006) On Optimal and Efficient in Place Merging SofSem, LNCS 3831, pp.350- 359 
8. Kim  P. and Kutzner A.(2008) Ratio based stable in-place merging 

 http://itbe.hanyang.ac.kr/ak/papers/tamc2008.pdf (Accessed 29 Aug 2019) 
9. Mohammed J. L. and Subi C. S. (1987) An Improved Block-Interchanged algorithm, VOL. 8, 113-121 
10. Symvonis A.(1994) Optimal Stable Merging.,  Int. Conf. on Computing and Information,  Proc. ICCI’ 

VOL. 94, 124-143 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4103&rep=rep1&type=pdf  (Accessed 
31Aug 2019) 

11. Symvonis A.(1995) Optimal Stable Merging, The Computer Journal, Volume 38, Issue 8,  Pages 
 681–690,  https://doi.org/10.1093/comjnl/38.8.681 

12. Xinok  (2014) In-Place Merge Sort Demystified https://xinok.wordpress.com/2014/08/17/in-place-
merge-sort-demystified-2/ (Accessed 29 Aug 2019) 

 

file:///G:/IJSAR%20PAPERS/2019%20vol-2%20issue-%20january-february/29......15.02.2019%20manuscript%20id%20IJASR004229/www.ijasr.org
https://core.ac.uk/download/pdf/82464674.pdf
https://arxiv.org/abs/1406.5453
http://itbe.hanyang.ac.kr/ak/papers/tamc2008.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.4103&rep=rep1&type=pdf
https://xinok.wordpress.com/2014/08/17/in-place-merge-sort-demystified-2/
https://xinok.wordpress.com/2014/08/17/in-place-merge-sort-demystified-2/

